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Outline

 Rotordynamics, an introduction

 Impulse Responses

 Arbitrary excitation

 Transfer function and Laplace Domain

 Shock Isolation

 Simple problems

 Youtube Demos
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Part I: Rotordynamics: an Introduction

 Rotor phenomenon

 Unbalance 

 Campbell diagrams
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Rotordynamics
 A specialized branch concerned with the behavior 

and diagnosis of rotating structures.
 commonly used to analyze the behavior of structures 

ranging from jet engines and steam turbines to auto 
engines and computer disk storage. 

 Vibration, noise, bearing damages 

 Key issues to be introduced
 Critical speed

 Whirling

 Campbell diagram
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Jeffcott Rotors

 A single disk mounted on a flexible and 
massless shaft with rigid bearings

 Serves as the fundamental model for 
studying rotor phenomena
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Whirling

 Rotation of bent shaft

 : rotating speed,     : whirling speed 
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Critical Speeds
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Whirling: Mathematics 

8



2023/4/7

5

Whirling Behavior

 Synchronous whirling:  

As  rotating speed passes the critical speed, the imbalance 
location would actually move toward the center
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Campbell Diagram

 known as "Whirl Speed 
Map" or a "Frequency 
Interference Diagram“

 Basic concept
 Natural frequencies 

depends on rotating 
speed

 Resonance occurs as 
natural frequencies hit 
rotating speed 
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Turbine Example
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Dynamic Balancing
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Part II: Periodic Inputs
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Introduction

 In Lecture III, we have introduced the 
response of a SDOF system subjected to a 
single sinusoidal response

 How about the responses subjected to
 A general periodic input

 E.g., a saw tooth or a rectangular pulse train

 A non-periodic input
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Responses Under a General Force (I)
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Responses Under a General Force (II)
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Response Under a Periodic Force with 
Irregular Form
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Part III: Vibration Subject to Arbitrary 
Excitations
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Introduction

 It is important to evaluate the response to a 
general, non-periodic input

 No, exact analytical solutions available

 However, the task can be performed by either
 Convolution approach

 Fourier transform or Laplace transform approach
 Transfer function

19

Impulse Response
 The response of a vibration system subjected 

to a unit impulse input

 Impulse function 
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Effect on spring-mass-damper ?



Ft  mv

impulse= momentum change  
 m[v( t0

) v(t0
)]

?F  mv0  v0 
?F 

m
 Ft

m

Just after 
impulse

Just before 
impulse
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For an underdamped system



x(t) 
?F ent

md

sind t  (response with zero I.C.)

x(t)  ?F h(t), where h(t)  ent

md

sind t

impulse response function 
  
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h(t  t) 
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for the case that the impulse occurs at t
note that the effects of non- zero initial conditions

and other forcing terms must be super imposed on 

this solution
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For example: If two 
pulses occur at two 
different times then 

their impulse 
responses will 
superimpose
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Impulse Response of a 
Vibration System (I)
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Impulse Response 
of a Vibration 
System (II)
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Convolution Integrals: Introduction

 Decompose a general input to the 
combination of a series of impulse train

 Superimpose the impulse response to form 
the final response

 The method itself can be treated as an 
“analytical” relation
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Convolution Integral (I)
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Convolution Integral (II)
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Linear Superposition Method

 A complicate input can be decomposed into a 
few simple input with
 scaling, multiplexing, and time shift operations

 The response are then becomes the linear 
superposition of the simple output after these 
linear operations
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Example: Pulse Input
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Time Shift Operation

 E.g., for the pulse input
 The total response = x1 + x2 

 Where

 X1

 x2
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Part IV: Transfer Function and 
Laplace Transform
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Transfer Functions

 A black box approach to correlate the input-
output relation

 Based on linear superposition principle

 Usually performed by Laplace Transform 
approach
 Or Fourier Transform
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Laplace Transform

 Changes ODE into algebraic equation

 Solve algebraic equation then compute the 
inverse transform

 Rule and table based in many cases

 Is used extensively in control analysis to 
examine the response

 Related to the frequency response function
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To get the time response this must be “inverse 
transformed”
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Laplace Transform: Fundamentals (I)

Consider a SDOF vibration system
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Laplace Transform: Fundamentals (II)

Transfer Functions: Z(s) Impedance;  Y(s): Admittance

39

Typical 
Laplace 
Transforms

40
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Properties 
of Laplace 
Transform
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Example: Rao Ex. 4.16

Find the response

42
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43

where
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Part V: Response Spectrum
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Introduction

 Shock
 A sudden application of a force input to a SDOF 

system to result a transient response

 The maximum value of the response can be used 
to measure the shcok sensitivity

 Response spectrum is a plot of the maximum 
peak response of the SDOF oscillator as a 
function of natural frequency

 Different shock inputs result in different response 
spectra 
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Typical Response Spectra
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General Response Spectra  (1)
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General Response Spectra (2)
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Typical 
Response 
Spectrum 
Subjected to 
Earthquake
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Part VI: Simple Problems
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Problem 1. Periodic Vibration of a 
Hydraulic Valve (Rao 4.1)
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Problem 2. Response of a Structure under 
Impact (Rao 4.4, 4.5)
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Problem 3. Step Force of a 
Compacting Machine (Rao 4.6)
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Problem 4. Blast Load on a Building 
Frame (Rao 4.10)
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Problem 5: Water Tank Subjected to 
Base Acceleration (Rao 4.12)
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Problem 6. Response of a Building 
Frame to an Earthquake (Rao. 4.13)
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Part VII: Youtube Demonstrations
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