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Part I: Rotordynamics: an Introduction

Rotor phenomenon
Unbalance
Campbell diagrams

Rotordynamics

A specialized branch concerned with the behavior
and diagnosis of rotating structures.

o commonly used to analyze the behavior of structures
ranging from jet engines and steam turbines to auto
engines and computer disk storage.

o Vibration, noise, bearing damages
Key issues to be introduced

o Critical speed

o Whirling

o Campbell diagram
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‘]effcott Rotors

= A single disk mounted on a flexible and
massless shaft with rigid bearings

= Serves as the fundamental model for
studying rotor phenomena

Flexdble, Unbalanced
Massless Shaft Disk

i m 1 Ip, ¢

Figure 3.1-1 A simple Laval-Jeffcott rotor

 Whitling

= Rotation of bent shaft
= o: rotating speed, ¢ : whirling speed

Rotor or disc Shaft A i )
i
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Critical Speeds

» When frequency of rotation of éhaft = one of the natural
frequencies of the shaft, critical speed of undamped system:

k
w = [—
m

+ When w = w,, rotor undergoes large deflections
— cause fatique and damage bearings

+ Slow transition of rotating shaft through the critical speed aids
development of large amplitudes.

+  Whirling critical speed should not be below 115 percent of the design full power
speed (NOAA)

www.omao.noaa.gov/swath/contractdocs/attachments/Attachmentd-02Rev 2 pdf
Marine 8 Aviation Operaitons, National Oceanic 8 Atmospheric Administration, US Dept of Commerce

Whirling: Mathematics

g =[(F - rf?) - ew? cos(wr — 8)Ji +[(rf +2/6) - ew? sin(wr — 9)]i
— kr — cf = m[F —rf? — ew? cos(wr — 9)]

—crf = m[rﬁi +2/ — ew? sin{wt — B)]

PvSi4 (-E- - éz)r= ew? cos(wt — 0)
m m

] +‘(—gr + 2:‘)9 = ew? sin(wt — 0)
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Whirling Behavior

Synchronous whirling: 6 = @

o

— e

w << Wy W= wh

As rotating speed passes the critical speed, the imbalance
location would actually move toward the center

Campbell Diagram

known as "Whirl Speed
Map" or a "Frequency
Interference Diagram®

Basic concept

o Natural frequencies =060
depends on rotating
speed T

o Resonance occurs as
natural frequencies hit
rotating speed

®, Whirl Frequency(Hz)

BW

Q, Spin Speed (RPM)




Turbine Exampl
Parameter Variation Analysis Sample Steam Turbine
Type: Campbell Diagram
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‘ Dynamic Balancing

FIGURE 9.10  Two-plane balancing. (Courtesy of Bruel and Kjaer Instruments, Inc.,
Marlborough. Mass.)




Part II: Periodic Inputs

Introduction

In Lecture Ill, we have introduced the
response of a SDOF system subjected to a
single sinusoidal response

How about the responses subjected to

o A general periodic input
E.g., a saw tooth or a rectangular pulse train

o A non-periodic input
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' Responses Under a General Force (1)
E(r) = By %a,—cosjm.r + %bj sin jwt
2 = =

-

2
a}_=;£ F(1) cos jewtdt, J=0,12, ...

by = %f F(#) sin jetdt, i=L32 ...
0

a oo o0
mx +cx + kx = F(f) = EU + Ea;-oosjwr + Eb}-sinjmf
j=1 j=1

.. : a
mx+cx+kx=30

mx + cx + kx = a;cos jwt
m¥ + ck + kx = b;sin jwt

g
X p('r) = E

| Responses Under a General Force (1)

2Lgr
c=tan ! | ———
# (1 = ﬁrz)

w
",
Gy | X (aj/k) o
W= 2t AT e v o
i bilk
Gik) sin(jwt — @)

+
ANVQa - B+ @y
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| Response Under a Periodic Force with
Irregular Form

2 N
ag=—2F
2
N 2jart; .
a; = — > F,cos =12, ...
] NZ! i T
2N 2jwt;
b= =3 Fsin"t,  j=1,2
N=

=]

Fs
,J \\ - fr by .
A S
e SR EE R N / N
k ot 1 Fy _‘+\ er ’,' ‘-.\2-:
\. ’2 P;'"_"“--/J “

Fy
Ly, ™= NAr

FIGURE 4.2  An irregular forcing function.

' Part I11: Vibration Subject to Arbitrary
Excitations
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Introduction

It is important to evaluate the response to a
general, non-periodic input

No, exact analytical solutions available
However, the task can be performed by either

o Convolution approach
o Fourier transform or Laplace transform approach
Transfer function

Impulse Response

The response of a vibration system subjected
to a unit impulse input

Impulse function

5(z‘—t0)={0 t#h j5(f—fo)dt=1

o t=t,
A

i

1._Sr-hc,

&

¢ is a small positive number

20
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From sophomore dynamics:

F() i.e. area impulse force = 'f F(t)dt = FAt
A undel/ T+& 0
1= pulse I(e)= J. F()dt :J. F(t)dt N-s

& T—¢&

A

:£25:ﬁ
2&

T-g T+

21

Use these properties to define the
impulse function:

Dirac Delta

F(t) function ¢ Equal

impulses

S
F(it-7)=0, t#1
[ F@-vydt=F

If F =1, this is the Dirac Delta & (t)

22
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Effect on spring-mass-damper ?

Just after Just before

. impulse impulse
impulse= momentum change \'
r . N\ . + _
FAt=Amv = m[v(to)—vM
7 FAt
= mvo = VO ==
m m

23

For an underdamped system

—Cw,t
e . :
x(t) =——sinw,t (response with zero I.C.)
mao,
e lﬁ
x(t)= ﬁh(t), where h(t) = sinw, t
impulse response function

11111111111

11111111111

0 10 20 30 40

Time 1 )

h(t—17)=——sinw,(t—17)
me.

24

2023/417

12



2023/417

t<rt
h(t—7)=1¢""""
mao,

sinw,(t—-7) t>71

for the case that the impulse occurs at 7
note that the effects of non - zero initial conditions

and other forcing terms must be super imposed on

this solution 1

=0
£ 0
. -1 ] ] I
For example: If two 0 10 20 0 40
pulses occur at two -10
different times then ) L/\/\/\M
their impulse ;
responses will 10 10 20 30 40
superimpose ~ /\/\[\/\/\M
<
+ 0
=
-1 I ) i
0 10 20 30 40

Time

25

| Impulse Response of a
Vibration System (I) Impulse = FA? = mx, — mx;

t+Ar
§=/ Fat
3

r+Ar
f:ﬁof Fdt = Fdt =1
- t

At—

~ mi+ck+kx=0

FAt =1 o /-\H“?'\—---

o
e o

E(f)
(a) (b) (c)

26

FIGURE 4.3 A single degree of freedom system subjected to an impulse.
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ﬂnpulse Response

of a Vibration X0 = f‘“‘"’{fncm st + 20 i wds}
System (II) _—ry
2muw,

IR .
" m

Impulse = J: =l=mx(t=0)—mx(t=0)=mx
wW=0=x,=0

2 : 1
x(t=[]]=xu=a

&bt

X(0) = gO) = S sin ot »
(:

Convolution Integrals: Introduction

= Decompose a general input to the
combination of a series of impulse train

= Superimpose the impulse response to form
the final response

= The method itself can be treated as an
“analytical” relation

28
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 Convolution Integral (I)

() = —— sinwgt = Fg(t)
,F([} niwy
i — X(0) = Fgt - 7)
Far=F
r

@ 4—1'*»‘}4 -AT

L (@)
x(1) ‘

‘ Fe(t — )
. ! \//\V/\'f

T

'.

29

‘ Convolution Integral (11)

Ax() = F(r)Arg(t — 7)

Fli) x(t) = ZF(m)g(t — 7) AT

U!I: /\ .

F T+Ar

FIGURE 4.6  An arbitrary (nonperiodic)

forcing function.

x(f) = lF(r)g(r - 7)dr

i -
x(t) = m_w£ F(r)e ¥ sin wy(t — 7) dr

mZ + ¢z + kz = —my

mi +ck+kx=F

1 Y E—
() = -w—d'/; Y(7) e el sin wy (t —)dr

2023/417
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Linear Superposition Method

A complicate input can be decomposed into a
few simple input with

o scaling, multiplexing, and time shift operations
The response are then becomes the linear

superposition of the simple output after these
linear operations

31

Example: Pulse Input

F(t)
Fy

Iy

(a)

Fy(1) Fy(1)
+ Fy

0 t + 0 t

e " cos(w,t — ) K-
J1-¢?
(b)

x(t) = h 1 S e ) cos(w, (t—t,) — @)
k 1— §2 32

16



‘ Time Shift Operation

= E.g., for the pulse input
o The total response = x1 + x2
a Where
o X1

x(t) = %[1 - e " cos(w,t — ¢)}

2

l-¢

o X2

x(t) = _;:0

1
1————=e""" cos(w, (t —t,) - ¢)]
[ Vi=¢’

33

Part IV: Transfer Function and
Laplace Transform

34
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Transfer Functions

A black box approach to correlate the input-
output relation

Based on linear superposition principle

Usually performed by Laplace Transform
approach
a Or Fourier Transform

35

Laplace Transform

Changes ODE into algebraic equation

Solve algebraic equation then compute the
inverse transform

Rule and table based in many cases

Is used extensively in control analysis to
examine the response

Related to the frequency response function

X(s)= £(x(t)) = Tx(t)e‘Stdt

36
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Take the transform of the equation of motion:

mX + cX + kx = F,cos ot =
F,s
(ms* +cs+k)X(s)=—5"—
S "tw
Now solve algebraic equation in s for X(s)
F,s
(ms* +cs+k)(s* +w?)

X(s)=

To get the time response this must be “inverse
transformed”

Laplace Transform: Fundamentals (I)

Consider a SDOF vibration system
mx + cx + kx = F(f)

X(s) = £x(i) =£ e Stx(e) dt

o 00

+ 5 f e~ x(f) dt = sx(s) — x(0)
0 0

2 %(r) = e % x(t)

52%(:) = £ e f;f () dt = s%(s) — sx(0) — i(0)

F(s) = LF@) = l e S F() dt

38
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| Laplace Transform: Fundamentals (II)

(ms® + cs + k) X(s) = F(s) + mx(0) + (ms + ¢)x(0) e
oy = FO) _ e =]
Z(s) = ) ms® + cs + k
T o LX) _ 1 _ 1 m
e = Z(s) F(s) ms*+cs+k ms®+ 2w,s + o) l
X(s) = Y(s) F(s) (1)

x(t) = £7%(s) = LV(s)F(s)

Transfer Functions: Z(s) Impedance; Y(s): Admittance

39

Typical
Laplace
Transforms

F(s) R EY)
1.1 5(£), unit impulse atf =0
x % wylr), unit step
nl
i "
a1 g
sia
5. 1 1 e
[E3] V- ay (= 1)!
@ ~af
6. ] 1=0
1 L
L ETaET) et
SLp 1 o
Grajatd) FoalP - - (- bt

1
a (s 4a)(stB)s+e)
g
10. (5 + #)is +b)(s+c)
b
“EE
12 5=
£
b

'3'¢s|.]’|n=
14 Fia
s 482

'E'R - oS+ on

wt

18- P ztn:.n az)

P o P

(b= a)(c —a) I (e=#)fa —8) : (2 =elp -¢)
p=a)e™ (o~ b~ (p=cje™

(5= a)(c — &) ! e-B-8  a-ab-2
sin bt

cosbl

@ *sin bt

e ¥cosbt

i)

:7...,..,1 ea""‘“ﬁn . .ﬁ_:_{;r <1

1 |ﬁ:?-e"“‘sh(mﬂ\f’|_—§l |¢) <1

¢ =1an '# | = (third quadrant) 40
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P‘roperties

(1)

F(s)= [;° F(t)e * dt

of Laplace

Transform

1. af4(t) + bla(t)

df
2%

df
dr?

i
PO

o
5. [af(t) ot

- {?[f -D)
7. e %f(t)

8. tf(x)

9. £(t) = [3 x(t = v)y(v) dr = [} y(t - t)x(v) dr
10. floo) = Iin;sF[s)

1. £(0+) = llm sF(s)

t<D
t=D

aFy(s) + bFz(5)
$F(s) - 1{0)

$2F(s) - s1(0) %

=0
SF(8) = a1 8" Gt

|
9t = 1)
Fis)  hO)
s §

h(0) = [H(t)dt],_,
Gl(s) = e *0F(s)

F(s +a)

dF(s)
Tds

Fls) = X(s)Y(s)

41

‘ Example: Rao Ex. 4.16

Find the response

)

Piston

— Cylinder

Material
being compacted

F(t) = {OF”

F(s) = LF(t) =

for0 =t =1
fort > 5

Fo(l —e™®)
A

42
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~ F(S) s+ 2w,
x(s) = 2 2 2 2 %o
m(s® + 2w,s + wy) 5+ 2w,s + w;
1

. Fyl — ') s + 2w,
X(s) = 2 : n T2 2%0
ms(s® + 2w,s + wy)  §°+ 2lw,s + o),

1 .
e
2+ 2w, + 2
R i K gt
mw;, (52 L Us ) mi. [ # e CER
s|l—=+— L2 ()
wi w,, El w“
X X X,
L X s 2{xy 0 1

where

0 = - i VT e+ )

+ e—;wn(f—fg) sin {wnm (t - t{)) i3 d)l}]
X0

- ﬁe_‘“'-‘ sin(w, V1 = %t — ¢y)

4 Howx + X)) _

Vi-g& o for sinw, V1 = 1)
w, =

¢ = cos'()

2023/417
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Part V: Response Spectrum

45

Introduction

Shock

o A sudden application of a force input to a SDOF
system to result a transient response

o The maximum value of the response can be used
to measure the shcok sensitivity

o Response spectrum is a plot of the maximum
peak response of the SDOF oscillator as a
function of natural frequency

o Different shock inputs result in different response
spectra

46
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| Typical Response Spectra

(% )mm "k-[,ér——‘
) [?] 1 2 3 4
we =gy 20
(), [ \\
[

hér

20
(). AT \}___:\7 as

1
0 05 0 tT -

| General Response Spectra (1)

x(t)

] 3
= F(r)sinw, (t — 7)dr
max mwnl ( } n( ) max

20 = —ﬂ’idl y(7) g fonlt=7) [—{w,sinw, (t — 7)

+ wycos wy (t — 1)) d7

— Lt

V1-2

z(f) = VP + @ sin(wgt — §)

48
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| General Response Spectra (2)

!
P= f Y(7) €5 cos wyr dT
0

0= / Y(7) € sin wyrdr
0

b=t {~(PV1 i Q;)}
P -0V1-)

= Lt
€
S = 140 = VP @
kel 7
s, _ .
Sd =~ ]Zlmx = ;u_; S, = |Z|max; Sy [z|max =

n

w,S,

. RIS
Typicil RN 2
Response SRS AR S R SR RS
S AN B J W A o

pectrum % >§ "-', > >§
Subjected to 7 K o {é A
Earthquake r N i 2\/{&3”;’% AL
KB PR

H : "*;/\ - <> g 4 \%5

RSB RN R R
RSSO TINY

RO RN
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‘ Part VI: Simple Problems

51

‘ Problem 1. Periodic Vibration of a
Hydraulic Valve @41

p(r) = pressure, Pa

50,000¢ -
50,000 50,000 (2 - £)

In the study of vibrations of valves used in hydraulic control systems, the valve and its clastic stem
are modeled as a damped spring-mass system, as shown in Fig. 4.1(a). In addition to the spring force
and damping force, there is a fluid pressure force on the valve that changes with the amount of open-
ing or closing of the valve. Find the steady-state response of the valve when the pressure in the cham- ~
ber varies as indicated in Fig. 4.1(b). Assume k = 2500 N/m, ¢ = 10 N-s/m, and m = 0.25kg. 5,

2023/417
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ﬂ)roblem 2. Response of a Structure under

Impact ®ao 4.4,4.5) Losgca -
m
F() N
Impact
hammer k k
() 2 2
fL
0 L rrrsd TSI

(a)

|
[} ]

t t+7
(&)

FIGURE 4.5  Structural testing using an impact hammer.

In the vibration testing of a structure, an impact hammer with a load cell to measure the impact force
is used to cause excitation, as shown in Fig. 4.5(a). Assuming m = 5kg, k = 2000 N/m
¢ = 10 N-s/m and F = 20 N-s, find the response of the system. >

g

Problem 3. Step Force of a »

Q i

Compacting Machine ®ao4.)

(b)

= ¥

25|
k

Piston %_ Y L T S 2 i

— Cylinder o t
)]

Material

being compacte: x(f)

Platform
2F,
k
£
k '
(2}

(a)

@
A compacting machine, modeled as a single degree of freedom system, is shown in Fig. 4.7(a). The
force acting on the mass m (m includes the masses of the piston, the platform, and the material being

compacted) due to a sudden application of the pressure can be idealized as a step force, as shown in
54

Fig. 4.7(b). Determine the response of the system.

2023/417
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‘ Problem 4. Blast L.oad on a Building
Frame ®ao 4.10)

F(r) = FD(I = :1) for0 = 7 = 1
0

F(ry=0 forr > 1,

x(1) F(r)
— Fy
F(1) m
k k
z 2
77 77 1o} 0 t
(a) (b)

Abuilding frame is modeled as an undamped single degree of freedom system (Fig. 4.11a). Find the

response of the frame if it is subjected to a blast loading represented by the triangular pulse shown
in Fig. 4.11(b). %

 Problem 5: Water Tank Subjected to
Base Acceleration ®ao4.12)

§—~ x(r)

i

Water tank —>| m

Fmax
Column, k ———» \
24
o w" t
— (1) N e

(a) (b)

The water tank, shown in Fig. 4.13(a), is subjected to a linearly varying ground acceleration as
shown in Fig. 4.13(b) due to an earthquake. The mass of the tank is m, the stiffness of the column is
k, and damping is negligible. Find the response spectrum for the relative displacement, z = =5
of the water tank.

2023/417
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‘ Problem 6. Response of a Building
Frame to an Earthquake ®ao. 4.13)

FIGURE 4.17  Building frame subjected
to base motion.

Abuilding frame has a mass of 6,800 kg and two columns of total stiffness £, as indicated in Fig. 4.17.
It has a damping ratio of 0.05 and a natural time period of 1.0 sec. For the earthquake characterized in —

Fig. 4.15, determine the following: 5

‘ Part VII: Youtube Demonstrations

58
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